MATDIP301

Third Semester B.E. Degree Examination, June/July 2019 Advanced Mathematics - I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- Express square root of 1-i in the form of x + iy. (07 Marks)
 - Find the modulus and amplitude of the following and express each in polar form.

(i)
$$1 - i\sqrt{3}$$

(ii)
$$\frac{1-i}{1+i}$$

(07 Marks)

c. Expand $\cos^6\theta$ in series of multiples of θ .

(06 Marks)

a. Find the nth derivative of $e^{ax} \cos(bx + c)$.

(06 Marks)

Find the nth derivative of $\frac{x}{(x+1)(x-2)}$.

(07 Marks)

c. If $y = \log(x + \sqrt{1 + x^2})$, prove that $(1 + x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y = 0$.

(07 Marks)

- 3 Find the angle between radius vector and the tangent of the curve $r = a(1 + \cos \theta)$. (06 Marks)
 - Find the Taylor's series expansion of the function e^x about x = 1. (07 Marks)
 - Obtain the Maclaurin's series expansion of the function $\log_e(1 + x)$ up to third degree terms. (07 Marks)
- a. If $\cos u = \frac{x+y}{\sqrt{x+\sqrt{y}}}$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{2} \cot u$. (06 Marks)
 - If $x = r \cos \theta$ and $y = r \sin \theta$, prove that JJ' = 1.

(07 Marks)

c. If $x^y + y^x = c$, where c is a constant, find $\frac{dy}{dx}$.

(07 Marks)

Obtain the reduction formula $I_n = \int \sin^n x \, dx$, where n is a positive integer.

(06 Marks)

Evaluate: $\int_{0}^{1} \int_{0}^{x} xy(x+y) dx dy$

(07 Marks)

(07 Marks)

Prove the following:

$$\beta(m, n) = \beta(n, m)$$

(06 Marks)

Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

(07 Marks)

Using Gamma function, evaluate the integral $\int_{0}^{1} \frac{1}{\sqrt{1-x^4}} dx$

(07 Marks)

7 a. Solve:
$$(x + y + 1)^2 \frac{dy}{dx} = 1$$
 (06 Marks)

b. Solve:
$$\frac{dy}{dt} = 1 + x^2 + y^2 + x^2y^2$$
. (07 Marks)

b. Solve:
$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$$
.
c. Solve: $(x^2 - xy + y^2)dx - xy dy = 0$ (07 Marks)

Solve the following second order O.D.Es.

a.
$$\frac{d^2y}{dx^2} + y = e^x$$
 (06 Marks)

b.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = \cos^2 x$$
 (07 Marks)

c.
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 2(1+x)$$
. (07 Marks)